208 research outputs found

    Improved Wolf Pack Algorithm for Optimum Design of Truss Structures

    Get PDF
    In order to find a more effective method in structural optimization, an improved wolf pack optimization algorithm was proposed. In the traditional wolf pack algorithm, the problem of falling into local optimum and low precision often occurs. Therefore, the adaptive step size search and Levy's flight strategy theory were employed to overcome the premature flaw of the basic wolf pack algorithm. Firstly, the reasonable change of the adaptive step size improved the fineness of the search and effectively accelerated the convergence speed. Secondly, the search strategy of Levy's flight was adopted to expand the search scope and improved the global search ability of the algorithm. At last, to verify the performance of improved wolf pack algorithm, it was tested through simulation experiments and actual cases, and compared with other algorithms. Experiments show that the improved wolf pack algorithm has better global optimization ability. This study provides a more effective solution to structural optimization problems

    TRUSS STRUCTURE OPTIMIZATION BASED ON IMPROVED WOLF PACK ALGORITHM

    Get PDF
    Aiming at the optimization of truss structure, a wolf pack algorithm based on chaos and improved search strategy was proposed. The mathematical model of truss optimization was constructed, and the classical truss structure was optimized. The results were compared with those of other optimization algorithms. When selecting and updating the initial position of wolves, chaos idea was used to distribute the initial value evenly in the solution space; phase factor was introduced to optimize the formula of wolf detection; information interaction between wolves is increased and the number of runs is reduced. The numerical results show that the improved wolf pack algorithm has the characteristics of fewer parameters, simple programming, easy implementation, fast convergence speed, and can quickly find the optimal solution. It is suitable for the optimization design of the section size of space truss structures

    Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity

    Full text link
    We propose a nonlocal entanglement concentration protocol (ECP) for NN-photon systems in a partially entangled W state, resorting to some ancillary single photons and the parity-check measurement based on cross-Kerr nonlinearity. One party in quantum communication first performs a parity-check measurement on her photon in an NN-photon system and an ancillary photon, and then she picks up the even-parity instance for obtaining the standard W state. When she obtains an odd-parity instance, the system is in a less-entanglement state and it is the resource in the next round of entanglement concentration. By iterating the entanglement concentration process several times, the present ECP has the total success probability approaching to the limit in theory. The present ECP has the advantage of a high success probability. Moreover, the present ECP requires only the NN-photon system itself and some ancillary single photons, not two copies of the systems, which decreases the difficulty of its implementation largely in experiment. It maybe have good applications in quantum communication in future.Comment: 7 pages, 3 figure

    Prediction of the potential distribution area of Glycyrrhiza inflata in China using a MaxEnt model

    Get PDF
    Glycyrrhiza inflata Batalin is an important medical plant of the genus Glycyrrhiza. It is one of the key protected plants in China, distributed in the desert areas of southern Xinjiang and Dunhuang of Gansu Province. It has a strong resistance to drought, heat, and salt stresses, and plays a pivotal role in sand fixtion in desert areas. In this study, based on 157 valid distribution records and eight environmental factors including climate factors and altitude, the potential distribution area of G. inflata in the last glacial maximum, middle Holocen, modern, and future (2050) times in China were predicted, using the optimized MaxEnt model and ArcGis 10.2 software. The results showed that the predicted distribution area was highly consistent with the current distribution range, and the area under the receiver operating characteristic (AUC) curve was 0.986, indicating that the prediction performance was excellent. The key climatic factors affecting the distribution were precipitation in December and the average annual precipitation. Meanwhile, the suitable area of G. inflata in modern times was 1,831,026 km2, mainly distributed in Turpan-Hami Basin, Tarim Basin, and Dunhuang of Gansu Province, with Lop Nur Town of Xinjiang as the distribution center. In 2050, the potential suitable area forG. inflata in China will be 1,808,090 km2, 250,970 km2 of which will be highly suitable, which is 150,600 km2 smaller than that in modern times, with a reduction rate of 60.0%. Therefore, there is a trend of great reduction in the suitable area of G. inflata. From the last glaciation maximum to the middle Holocene, the geographical distribution center shifted to the southwest margin of the Kumtag Desert, Xinjiang, then later continued to shift to the southwest. This study will provide a basis for understanding the origin and evolution of G. inflata, developing conservation strategies to minimize the impacts of environment change, and utilizing plant resource

    Interplanetary scintillation observation and space weather modelling

    Get PDF
    Interplanetary scintillation (IPS) refers to random fluctuations in radio intensity of distant small-diameter celestial object, over time periods of the order of 1 s. The scattering and scintillation of emergent radio waves are ascribed to turbulent density irregularities transported by the ubiquitous solar wind streams. The spatial correlation length of density irregularities and the Fresnel radius of radio diffraction are two key parameters in determining the scintillation pattern. Such a scintillation pattern can be measured and correlated between multi-station radio telescopes on the Earth. Using the “phase-changing screen” scenario based on the Born approximation, the bulk-flow speed and turbulent spectrum of the solar wind streams can be extracted from the single-station power spectra fitting and the multi-station cross-correlation analysis. Moreover, a numerical computer-assisted tomography (CAT) model, iteratively fit to a large number of IPS measurements over one Carrington rotation, can be used to reconstruct the global velocity and density structures in the inner heliosphere for the purpose of space weather modelling and prediction. In this review, we interpret the underlying physics governing the IPS phenomenon caused by the solar wind turbulence, describe the power spectrum and cross correlation of IPS signals, highlight the space weather application of IPS-CAT models, and emphasize the significant benefits from international cooperation within the Worldwide IPS Stations (WIPSS) network

    Current trends in drug metabolism and pharmacokinetics.

    Get PDF
    Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice
    corecore